Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil
نویسندگان
چکیده
Complex multi-trophic interactions in vectorborne diseases limit our understanding and ability to predict outbreaks. Arthropod-vectored pathogens are especially problematic, with the potential for novel interspecific interactions during invasions. Variations and novelties in plant-arthropod-pathogen triumvirates present significant threats to global food security. We examined aspects of a phytoplasma pathogen of citrus across two continents. 'Candidatus Phytoplasma aurantifolia' causes Witches' Broom Disease of Lime (WBDL) and has devastated citrus production in the Middle East. A variant of this phytoplasma currently displays asymptomatic or 'silent' infections in Brazil. We first studied vector capacity and fitness impacts of the pathogen on its vectors. The potential for co-occurring weed species to act as pathogen reservoirs was analysed and key transmission periods in the year were also studied. We demonstrate that two invasive hemipteran insects-Diaphorina citri and Hishimonus phycitis-can vector the phytoplasma. Feeding on phytoplasma-infected hosts greatly increased reproduction of its invasive vector D. citri both in Oman and Brazil; suggesting that increased fitness of invasive insect vectors thereby further increases the pathogen's capacity to spread. Based on our findings, this is a robust system for studying the effects of invasions on vectorborne diseases and highlights concerns about its spread to warmer, drier regions of Brazil.
منابع مشابه
Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus
Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus...
متن کاملThe evolution of plant-insect mutualisms.
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and mainten...
متن کاملEffects of Isaria fumosorosea on TYLCV (Tomato Yellow Leaf Curl Virus) Accumulation and Transmitting Capacity of Bemisia tabaci
Tomato yellow leaf curl virus (TYLCV) is transmitted by the Bemisia tabaci pest Middle East-Asia Minor 1 (MEAM1) in China. Isaria fumosorosea is a fungal pathogen of B. tabaci. However, the effects of fungal infection on TYLCV expression and transmission by MEAM1 are unclear. In this study, potted tomatoes containing second instar nymphs of MEAM1 were treated with I. fumosorosea IfB01 strain an...
متن کاملComposition, distribution and economic importance of insect pests of prioritized aromatic plants in some growing of Ethiopia
Ethiopia is remarkably rich in its biological, ecological and landscape diversity and is home to outstanding natural bio-resources such as a number of herbs, aromatic and medicinal plants. The present study was carried out to study the composition, distribution and economic importance of insect pests of prioritized aromatic (Mentha sp., lemon verbena, fennel, rosemary, rosadamascene, oregano, p...
متن کاملA few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants
Background and Aims Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize ( Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ' Candidatus Phytoplasma'. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like an...
متن کامل